Hybrid Alternatives To Norwood Stage-1 May Not Be A Lower Risk Alternative

Travis J. Wilder
Edward J. Hickey
Gerhard Ziemer
Christo I. Tchervenkov
Marshall L. Jacobs
Peter J. Gruber

Eugene H. Blackstone
Brian W. McCrindle
William G. Williams
William M. DeCampli
Christopher A. Caldarone
Christian Pizarro

American Heart Association
2014, Chicago, IL
Congenital Heart Surgeons’ Society: Critical Left Ventricular Outflow Tract Obstruction

Critical LVOTO
N = 692

Admission to CHSS institution
2005 – 2013
21 institutions
≤ 30 days
Ductal dependent circulation
Congenital Heart Surgeons’ Society: Critical Left Ventricular Outflow Tract Obstruction

Critical LVOTO
N = 692

- Ross-Konno n=3
- Yasui n=5
- Aortic Valvotomy n=107
- HTX n=5
- Single Ventricle Repair n=564
Single Ventricle Repair

\(n = 564 \)

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>41%</td>
<td>232</td>
</tr>
<tr>
<td>SANO</td>
<td>39%</td>
<td>222</td>
</tr>
<tr>
<td>HYBRID</td>
<td>20%</td>
<td>110</td>
</tr>
</tbody>
</table>
Single Ventricle Repair
n = 564

BT (41%)
n = 232

SANO (39%)
n = 222

HYBRID (20%)
n = 110

Norwood Operation:
Modified BT Shunt
Single Ventricle Repair
n = 564

- BT (41%)
 n = 232

- SANO (39%)
 n = 222

- HYBRID (20%)
 n = 110

Norwood Operation:
SANO Shunt
Single Ventricle Repair

HYBRID

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT (41%)</td>
<td>232 n = 232</td>
</tr>
<tr>
<td>SANO (39%)</td>
<td>222 n = 222</td>
</tr>
<tr>
<td>HYBRID (20%)</td>
<td>110 n = 110</td>
</tr>
</tbody>
</table>

- **Bilateral PA Band***: 110 (100%)
- **Ductal stenting**: 76 (68%)
- **PDA patency w/ PgE**: 35 (32%)
- **Atrial septostomy/stent**: 11 (10%)
- **Reverse BT shunt**: 18 (16%)

4 Children with PA banding in 2 stages
Is the HYBRID strategy a low risk alternative to Norwood Stage-1?
1) *Risk-adjusted* survival analysis:
 All 564 Children
1) *Risk-adjusted* survival analysis:
All 564 Children

2) *Propensity matched* survival analysis:
Subset of “comparable” children
1) Risk-adjusted survival: Competing Events
Competing Events:

Alive without definitive operation

% Proportion in each end-state

Years after procedure
Competing Events:
1V to 2V Conversation

Alive without definitive palliation

% Proportion in each end-state

Years after procedure
Competing Events:

Transplant

- Alive without definitive palliation

% Proportion in each end-state

Years after procedure

1V to 2V

8% 8% 8%

1%
Competing Events:

Fontan

- Alive without definitive palliation

Graph showing percent proportion in each end-state over years after procedure:
- Fontan
- Transplant
- 1V to 2V
- 8% Transplant, 8% Transplant
- 49% Fontan
Competing Events:

- Died without definitive palliation
- Alive without definitive palliation
- Died without definitive palliation
- 1V to 2V
- Fontan
- Transplant

% Proportion in each end-state

Years after procedure
Competing Events:

- Died without definitive palliation
- Alive without definitive palliation
- Died without definitive palliation
- 1V to 2V
- Fontan
- Transplant

% Proportion in each end-state

Years after procedure

- 49%
- 34%
- 8%
- 1%
Unadjusted Survival:
All 564 Children

<table>
<thead>
<tr>
<th>Years after procedure</th>
<th>% Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>88%</td>
</tr>
<tr>
<td>2</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>68%</td>
</tr>
<tr>
<td>4</td>
<td>66%</td>
</tr>
</tbody>
</table>

(323) (270) (179) (102)
Risk factors for death: Multivariable

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>P</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low birth weight</td>
<td><.0001</td>
<td>64%</td>
</tr>
<tr>
<td>Small LVOT z-score</td>
<td><.0001</td>
<td>88%</td>
</tr>
<tr>
<td>Small MV annulus z-score</td>
<td>.065</td>
<td>41%</td>
</tr>
<tr>
<td>BT Shunt</td>
<td><.0001</td>
<td>72%</td>
</tr>
<tr>
<td>HYBRID</td>
<td>.003</td>
<td>72%</td>
</tr>
</tbody>
</table>
Risk-Adjusted Survival: By Initial Strategy (n = 564)

- **SANO**: 77%
- **HYBRID**: 62%
- **BT**: 60%

Factors:
- Low birth weight
- Small LVOT
- Small mitral valve annulus

Years after procedure
Risk-Adjusted Survival: Vs. Birth Weight (n = 564)
Risk-Adjusted Survival:
Vs. *Birth Weight* (n = 564)
Survival versus Birth Weight:
By Initial Strategy (n = 564)

Birth weight (kg)
Median (range):
SANO = 3.1 (1.8 - 4.4)
BT = 3.2 (1.6 - 4.5)
HYBRID = 3.0 (1.0 - 4.4)
Risk-adjusted survival

SANO was associated with improved 4-year survival

Low birth weight was a strong predictor of mortality

HYBRID procedures mitigate some risk associated with low birth weight
2) Propensity Matched Survival: “Comparable” children
Propensity Matched Children:

HYBRID with BT

HYBRID=110
100%

BT=232
100%
Propensity Matched Children: HYBRID with BT
Propensity Matched Children:
HYBRID with BT

- HYBRID 25%
- BT 65%

Matched

- 82 (75%)
- 82 (35%)
Propensity Matched Children: HYBRID with BT

HYBRID: Unmatched (n=28)

Matched

C-statistic = .77

HYBRID
25%

BT: Unmatched (n=150)

BT
65%

82 (75%)

82 (35%)
<table>
<thead>
<tr>
<th>Variable</th>
<th>HYBRID</th>
<th>Value</th>
<th>BT</th>
<th>Value</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at operation (d)</td>
<td>8 ± 7</td>
<td>9 ± 7</td>
<td>.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA at operation</td>
<td>.2 ± .02</td>
<td>.2 ± .02</td>
<td>.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branch PA z-score</td>
<td>-.4 ± 1.7</td>
<td>-.8 ± 1.6</td>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDA (cm)</td>
<td>0.67 ± 0.47</td>
<td>0.73 ± 0.83</td>
<td>.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV Index</td>
<td>6 ± 2</td>
<td>6 ± 2</td>
<td>.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV z-score</td>
<td>-1.1 ± 1.9</td>
<td>-1 ± 2.1</td>
<td>.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic valve sinus (cm)</td>
<td>.46 ± 0.2</td>
<td>.47 ± 0.2</td>
<td>.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV atresia</td>
<td>33%</td>
<td>28%</td>
<td>.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal MV morphology</td>
<td>20%</td>
<td>27%</td>
<td>.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small/Restrictive ASD</td>
<td>51%</td>
<td>57%</td>
<td>.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic arch hypoplasia</td>
<td>94%</td>
<td>93%</td>
<td>.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal TV</td>
<td>90%</td>
<td>92%</td>
<td>.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV Dysfunction</td>
<td>56%</td>
<td>68%</td>
<td>.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic valve atresia</td>
<td>37%</td>
<td>45%</td>
<td>.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Survival in Propensity Matched Children:

HYBRID with BT (n = 164)

% Survival

Years after procedure

p = 0.13
Propensity Matched Children: HYBRID with SANO

Matched

C-statistic = .75

HYBRID: Unmatched (n=28)

SANO: Unmatched (n=140)

82 (37%)

82 (75%)

SANO 63%
<table>
<thead>
<tr>
<th>Variable</th>
<th>HYBRID</th>
<th>SANO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at operation (d)</td>
<td>8 ± 6</td>
<td>7 ± 5</td>
<td>.56</td>
</tr>
<tr>
<td>BSA at operation</td>
<td>0.2 ± 0.02</td>
<td>0.2 ± 0.02</td>
<td>.75</td>
</tr>
<tr>
<td>MV z-score</td>
<td>-15 ± 8</td>
<td>-16 ± 8</td>
<td>.37</td>
</tr>
<tr>
<td>Normal MV morphology</td>
<td>24%</td>
<td>29%</td>
<td>.48</td>
</tr>
<tr>
<td>Aortic valve atresia</td>
<td>46%</td>
<td>44%</td>
<td>.75</td>
</tr>
<tr>
<td>Aortic arch hypoplasia</td>
<td>91%</td>
<td>91%</td>
<td>1</td>
</tr>
</tbody>
</table>
Survival in Propensity Matched Children:

HYBRID with **SANO** (n = 164)

<table>
<thead>
<tr>
<th>Years after procedure</th>
<th>HYBRID</th>
<th>SANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>65%</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>65%</td>
<td>77%</td>
</tr>
<tr>
<td>3</td>
<td>65%</td>
<td>77%</td>
</tr>
<tr>
<td>4</td>
<td>65%</td>
<td>77%</td>
</tr>
</tbody>
</table>

p = 0.015
Summary

In neonates with critical LVOTO who underwent initial 1-V palliation:

Norwood operation with SANO is associated with improved survival prior to Fontan completion:

Risk-adjusted survival
Survival in propensity matched children
Summary

In neonates with critical LVOTO who underwent initial 1-V palliation:

Birth weight has a strong association with poor survival:

HYBRID strategies appear to mitigate risk associated with very low birth weight
Clinical Implication

In children with similar baseline characteristics, HYBRID strategies to Norwood Stage-1 may not be a low risk alternative:

However, they may currently provide an advantage in neonates with low birth weight.

The full extent of potential advantages associated with HYBRID strategies remains to be determined.