Kirklin-Ashburn Fellow

Introduction, Learning the System, Future Directions

Paul Devlin
Introduction
Current Projects

- AAOCA:
 - Ischemic Patient Anatomy
 - Imaging analysis

- AVSD:
 - Determinants of a successful 2 ventricle repair

- Critical Left Heart Obstruction [LVOTO]
 - Arch obstruction after Norwood
 - Baseline Echo correlation with outcomes
Critical Left Heart Obstruction [LVOTO]
Interstage Intervention for Arch Obstruction After Norwood

- We sought to determine the prevalence and risk factors

- 593 patients underwent Norwood, 2005 – 2017

- 119 (20%) had interstage arch interventions

- We utilized competing risks analysis to first intervention during the interstage period following Norwood
Arch Interventions After Norwood and Before or during Stage II Procedure

Arch interventions
n=151
119 patients

Catheter
n=115
(21 at pre-stage II cath)
100 patients

Balloons Dilation
n=112

Stenting of Coarctation
n=4

Isolated Arch Repair
n=14

Concurrent with SVCPA
n=17

Surgical
n=36
33 patients

Concurrent with HTX
n=3

Concurrent with Yasui
n=2
Competing Risk Analysis to First Event after Norwood (N=593)

Prevalence of End State (%) vs Months After Norwood:
- No Event
- SVCPA without Arch Int (58%)
- Arch Int (19%)
- HTX or Death (18%)
- SVCPA+Arch (2%)
- 2V Repair (1%)

Graph shows the prevalence of different end states over time after Norwood surgery.
Arch Obstruction Post-Norwood

• Risk factors:
 • Decreased Risk:
 • Interdigitating distal arch repair
 • Increased Risk:
 • PA-Aorta connection without patch (Brawn type anastomosis)
 • Longer cardiopulmonary bypass time
 • Presence of sinusoids on pre-op echo
Interdigitating Repair
Institutional Variability

• Proportion of patients with arch re-intervention:
 Range: 0 – 46%

• Pre-Intervention Gradient for Catheter arch intervention
 Median: 20.0mmHg (2 to 62)
Conclusions

• There is a high risk of arch obstruction during the interstage period after Norwood.

• Interdigitating repair of the distal aortic anastomosis is protective against arch obstruction.

• A standardized definition of arch obstruction is needed.
Critical Left Heart Obstruction

• Abstract submitted to AATS Annual Meeting

Intervention for Arch Obstruction in the Interstage Period Following Norwood: Prevalence, Risk Factors, and Practice Variability

Paul J. Devlin, MD, Brian W. McCrindle, MD, MPH, Pirooz Eghtesady, MD, PhD, Bahaaladin Alsoufi, MD, PhD, Eugene H. Blackstone, MD, James M. Meza, MD, William M. DeCampli, MD, PhD, James K. Kirklin, MD, Jeffrey P. Jacobs, MD, Ali Dodge-Khatami, MD, Kristine J. Guleserian, MD, James E. O’Brien, MD, Erle H. Austin III, MD, Peter J. Gruber, MD, PhD, and Tara Karamlou, MD, MSc
Questions for Discussion

• How do you currently track which patients are eligible for CHSS studies at your institution?
Questions for Discussion

• How do you currently track which patients are eligible for CHSS studies at your institution?

• What do you find to be the most difficult part of enrolling a patient in a CHSS study?
Future Projects

• Critical Aortic Stenosis
 • Late functional health outcomes

• Further analysis of arch obstruction beyond stage II procedure
Remote Data Abstraction

• Future of Remote Data Abstraction

 • REDCAP forms

 • Forms populated with data that is already abstracted at the Data Center

 • More centers?
THANK YOU!!!

• Without you, there would be no CHSS Data Center!

• Your work enables life changing research that would not be possible without the coordination of all of your centers

• We find answers to tough questions about rare diseases and YOU make it possible!